
Journal of Magnetic Resonance 168 (2004) 314–326

www.elsevier.com/locate/jmr
Rotational-resonance distance measurements in multi-spin systemsq

Aswin Verhoeven,a Philip T.F. Williamson,a Herbert Zimmermann,b

Matthias Ernst,a and Beat H. Meiera,*

a Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
b Max-Planck-Institut f€ur medizinische Forschung, Abteilung Biophysik, Jahnstrasse 29, D-69120 Heidelberg, Germany

Received 14 November 2003; revised 8 March 2004

Available online 14 April 2004
Abstract

It is demonstrated that internuclear distances can be evaluated from rotational-resonance (RR) experiments in uniformly 13C-

labelled compounds. The errors in the obtained distances are less than 10% without the need to know any parameters of the spin

system except the isotropic chemical shifts of all spins. We describe the multi-spin system with a simple fictitious spin-1/2 model. The

influence of the couplings to the passive spins (J and dipolar coupling) is described by an empirical constant offset from the ro-

tational-resonance condition. Using simulated data for a three-spin system, we show that the two-spin model describes the rota-

tional-resonance transfer curves well as long as none of the passive spins is close to a rotational-resonance condition with one of the

active spins. The usability of the two-spin model is demonstrated experimentally using a sample of acetylcholine perchlorate with

labelling schemes of various levels of complexity. Doubly-, triply-, and fully labelled compounds lead to strongly varying RR

polarization-transfer curves but the evaluated distances using the two-spin model are identical within the expected error limits and

coincide with the distance from the X-ray structure. Rotational-resonance distance measurements in fully labelled compounds allow,

in particular, the measurement of weak couplings in the presence of strong couplings.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

The measurement of internuclear distances by high-

resolution solid-state magic-angle spinning (MAS)

NMR is an important tool for structure determination in

micro-crystalline and non-crystalline samples in analogy

to similar protocols available in liquid-state NMR
spectroscopy [1]. Because MAS is indispensable for ob-

taining high spectral resolution, recoupling methods [2]

must be employed to recover distance information.

Recoupling methods can be broadly divided into

broadband and selective methods depending on the

question whether all dipolar couplings in the sample are

recovered simultaneously or whether spin pairs are re-

coupled selectively based on their spectral properties,
e.g., the chemical shifts. Both approaches are valuable
qSupplementary data associated with this article can be found, in

the online version, at doi: 10.1016/j.jmr.2004.03.009.
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and largely complementary, the former giving a large

number of relatively inaccurate distance constraints, the

latter only a few but more accurate distances. Selective

methods can also be used to measure smaller dipolar

couplings, corresponding to larger distances, in the

presence of larger couplings [3,4], thereby, overcoming

the problems of dipolar truncation [5].
The rotational-resonance experiment (RR) is a robust

and widely applied method for selective homonuclear

recoupling [6–8]. It requires the MAS frequency to

match an integer submultiple of the isotropic chemical-

shift difference between the two selected active spins, i.e.,

nxr ¼ jXiso
1 � Xiso

2 j. The RR condition must be met to an

accuracy prescribed by the magnitude of the active di-

polar coupling [7,8]. Despite this inherent spectral se-
lectivity of RR recoupling, most practical applications

have been to spin systems where relatively isolated pairs

have been introduced by selective labelling. Such

chemically isolated spin pairs lead to particularly simple

spin dynamics which has been extensively characterized

[8]. The drawback of this procedure is the necessity of
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preparing a number of selectively labelled samples which
is expensive and time consuming.

We have recently shown experimentally and by nu-

merical calculations that relatively accurate distance

information (with a precision of a few percent) can in-

deed be obtained from uniformly 13C-labelled com-

pounds [3]. In principle, the RR polarization-transfer

curves for small spin systems (less than 10 spins) can

readily be calculated numerically [9]. However, such
calculations require either pre-existing knowledge about

the spin-system parameters (in particular J couplings,

dipolar-coupling tensors, and chemical-shift tensor), or

the fitting of these parameters. The strategy described in

this publication aims at identifying conditions under

which the RR curves can be fitted by a modified two-

spin system (and ultimately a single fictitious spin 1/2)

with the desired internuclear distance and an effective
offset as the only relevant fit parameter. In this article,

we expand our earlier phenomenological description [3]

of the effects of the passive spins on the polarization-

transfer curve and provide a theoretical basis for the

reduction of a three-spin to a two-spin problem. Gen-

eralization to more spins is not difficult.
2. Theoretical description

We consider a three-spin system under MAS with one

of the spin pairs on or close to rotational resonance. We

call this spin pair the �active� spin pair and denote these

two spins with labels 1 and 2 (Fig. 1A). The active spin

pair has dipolar and J couplings to an additional �pas-
sive� spin 3 which is not on rotational resonance with
A

B

Fig. 1. (A) Topology of the spin system used in the simulations. Spins 1 and 2

3 is the passive spin. (B) Schematic representation of the block diagonalizatio

active spin pair are shown in black, the elements outside these subspaces in
either one of the active spins. For simplicity, we neglect
the chemical-shift anisotropy and consider the following

simple model Hamiltonian in the usual rotating frame:

HðtÞ ¼ Hiso
cs þHddðtÞ þHJ ð1Þ

with the isotropic chemical-shift Hamiltonian

Hiso
cs ¼ X1I1z þ X2I2z þ X3I3z; ð2Þ

the J -coupling Hamiltonian

HJ ¼ 2pJ12 I
*

1 � I
*

2 þ 2pJ13 I
*

1 � I
*

3 þ 2pJ23 I
*

2 � I
*

3; ð3Þ
and the dipolar-coupling Hamiltonian

HddðtÞ¼b12ðtÞð3I1zI2z� I
*

1 � I
*

2Þþb13ðtÞ

�ð3I1zI3z� I
*

1 � I
*

3Þþb23ðtÞð3I2zI3z� I
*

2 � I
*

3Þ; ð4Þ

with

bijðtÞ ¼
X2
n¼�2
n 6¼0

ðbnijeinxrtÞ: ð5Þ

The constants bnij are the Fourier coefficients of the

dipolar coupling whose explicit form is given in Ap-

pendix A.

To obtain a time-independent Hamiltonian, we

transform the time-dependent Hamiltonian of Eq. (1)

into the appropriate interaction frame and invoke the
secular approximation. The active spin pair is close to a

rotational-resonance condition with a small offset

d12 ¼ X2 � X1 � n12xr. Spins 1 and 3 are offset by

d13 ¼ X3 � X1 � n13xr from the nearest rotational-res-

onance condition and the corresponding rotational-res-

onance condition for the spin pair 2–3 is then given by

n23 ¼ n13 � n12 leading to X3 � X2 ¼ d13 � d12 þ n23xr.
form the ‘‘active’’ spin pair which is on rotational resonance while spin

n of the three-spin Hamiltonian of Eq. (8). The 2� 2 subspaces of the

a lighter shading.
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We can rewrite the isotropic chemical-shift Hamiltonian
of Eq. (2) using the rotational-resonance conditions

mentioned above and obtain

Hiso
cs ¼ X1Fz þ ðn12xr þ d12ÞI2z þ ðn13xr þ d13ÞI3z ð6Þ

with the total spin operator Fz ¼ I1z þ I2z þ I3z. Except
for the offsets from the rotational-resonance condition

this Hamiltonian has the required form for the rotating-

frame transformation operator, namely:

R ¼ Hiso
cs � ðd12I2z þ d13I3zÞ

¼ X1Fz þ n12xrI2z þ n13xrI3z: ð7Þ

Neglecting all time-dependent terms in the interac-
tion-frame Hamiltonian, expð�iRtÞH expðRtÞ, we obtain
a time-independent zeroth-order average Hamiltonian

H ¼ H
iso

cs þHdd þHJ ; ð8Þ
with the chemical-shift Hamiltonian

H
iso

cs ¼ d12I2z þ d13I3z; ð9Þ
the J -coupling Hamiltonian

HJ ¼ 2pJ12I1zI2z þ 2pJ13I1zI3z þ 2pJ23I2zI3z; ð10Þ
and the dipolar-coupling Hamiltonian

Hdd ¼ bn12
1
2
ðIþ1 I�2
�

þ I�1 I
þ
2 Þ
�
þ bn13

1
2
ðIþ1 I�3
�

þ I�1 I
þ
3 Þ
�

þ bn23
1
2
ðIþ2 I�3
�

þ I�2 I
þ
3 Þ
�
: ð11Þ

It is well known that the matrix representation of the

Hamiltonian of Eq. (8) is block diagonal if the basis

functions are ordered according to the total magnetic

quantum number fz (see Fig. 1B). Because the initial

density operator can also be block diagonalized in the

same way, the time evolution of the spin system can be

evaluated for each subspace separately. We can restrict

the discussion to the two 3� 3 zero-quantum (ZQ)
subspaces with the matrix representation
H
ZQ

1=2 ¼
1

2

pð�J12 � J13 þ J23Þ þ d12 þ d13 �bn12 �bn13
�ðbn12Þ

� pð�J12 þ J13 � J23Þ � d12 þ d13 �bn23
�ðbn13Þ

� �ðbn23Þ
� pðJ12 � J13 � J23Þ þ d12 � d13

2
4

3
5; ð12Þ
and
13 23

H
ZQ

�1=2 ¼
1

2

pð�J12 � J13 þ J23Þ � d12 � d13 �ðbn12Þ
� �ðbn13Þ

�

�bn12 pð�J12 þ J13 � J23Þ þ d12 � d13 �ðbn23Þ
�

�bn13 �bn23 pðJ12 � J13 � J23Þ � d12 þ d13

2
4

3
5: ð13Þ
Note that the coupling elements bnij in the two ma-

trices given above are the Fourier components corre-

sponding to the nij rotational-resonance condition for

the transition involved. In the absence of chemical-shift

anisotropy, they are only nonzero for the four condi-
tions jnijj ¼ 1; 2 while the presence of shift anisotropy
can lead to nonzero values for all integer values of n,
including 0. Each ZQ subspace supports three zero-

quantum transitions and the difference polarization of

the two active spins SðtÞ ¼ hI1z � I2ziðtÞ can be written in

the general form

SðtÞ ¼ C þ Aþ1=2
12 cosðxþ1=2

12 tÞ þ Aþ1=2
13 cosðxþ1=2

13 tÞ

þ Aþ1=2
23 cosðxþ1=2

23 tÞ þ A�1=2
12 cosðx�1=2

12 tÞ

þ A�1=2
13 cosðx�1=2

13 tÞ þ A�1=2
23 cosðx�1=2

23 tÞ: ð14Þ

The seven amplitudes C and A�1=2
ij and the six fre-

quencies x�1=2
ij can be evaluated analytically from the

matrices given above. The resulting general equations are,

however, lengthy and do not provide much insight into

the problem. Furthermore, they are usually not suited to

analyze experimental data because of the large number of
parameters that have either to be known beforehand,

assumed, or fitted.

We, therefore, introduce a simple perturbation treat-

ment which reduces the three-spin problem to an effective

two-spin problem for the case that the two active spins are

close to rotational resonance and the passive spins are far

from any rotational-resonance condition. Reduction to

an effective 2-spin system is equivalent to block-diago-
nalizing the two 3� 3 subblocks (see Fig. 1B) into a 1� 1

and a 2� 2 subblock. The two 2� 2 subblocks represent

the fictitious spin-1/2 systems which describe, approxi-

mately, the ZQ subspace of the active spin pair. In this

approximation, the two 2� 2 subblocks provide all the

information needed to calculate SðtÞ. In the present

treatment, a single passive spin is taken into account but

the generalization to a larger number of passive spins is
possible. We separate the Hamiltonian into an unper-

turbed part H
ð0Þ
�1=2 which contains the diagonal elements

and the active dipolar coupling and into a perturbation

V�1=2 which contains the passive couplings and is defined
(for the +1/2 subspace) by

V1=2 ¼
1

2

0 0 �bn13
0 0 �bn23

�ðbn Þ� �ðbn Þ� 0

2
4

3
5: ð15Þ
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The correction to the diagonal elements of H
ð0Þ
1=2 can

be obtained in second-order perturbation theory by

Eð2Þ
1 ¼ jbn13j

2

4pð�J12 þ J23Þ þ 4d13
ffi jbn13j

2

4d13
;

Eð2Þ
2 ¼ jbn23j

2

4pð�J12 þ J13Þ � 4d12 þ 4d13
ffi jbn23j

2

4d13
;

Eð2Þ
3 ¼ �Eð2Þ

1 � Eð2Þ
2 :

ð16Þ

Neglecting the part proportional to the unity opera-

tor, the 2� 2 zero-quantum subspaces of the active spin

pair can now be written as

H�1=2 ¼ D�1=2
12 SZQ

z þ jbn12jSZQ
u ; ð17Þ

with

D�1=2
12 ¼ �pJ13 þ pJ23 � d12 �

jbn13j
2

4d13
� jbn23j

2

4d13
: ð18Þ

The operators SZQ
z and SZQ

u are fictitious spin-1/2 oper-

ators in the 2� 2 zero-quantum subspace of the active

spin pair and SZQ
u is a generalized transverse spin oper-

ator in the xy plane as defined by

SZQ
u ¼ cosðuÞSZQ

x þ sinðuÞSZQ
y ; ð19Þ

where u depends on the phase of the complex Fourier

component bn12. By a simple (crystal orientation depen-

dent) z-rotation, the dipolar field can be aligned with the

x-axis of the ZQ subspace:

H�1=2 ¼ D�1=2
12 SZQ

z þ jbn12jSZQ
x : ð20Þ

Eq. (20) is formally identical to the Hamiltonian of a

two-spin system under off-RR conditions. The crystal-

orientation-dependent effective RR mismatch D�1=2
12 de-

pends on the passive dipolar and J couplings. In the

absence of J couplings, the offsets in the two subblocks

are the same, except of the sign and the time evolution in

the two subspaces is identical. We furthermore note that

in the absence of J couplings the offset D�1=2
12 for a single

crystallite, but not in the powder average, can be re-

moved by setting the MAS frequency slightly offset
(d12 6¼ 0) from the exact RR condition.

The time evolution of the difference polarization in

such a two-spin model is given by

SðtÞ
Sð0Þ ¼

1
2
½C þ A�1=2 cosðx�1=2

eff tÞ þ Aþ1=2 cosðxþ1=2
eff tÞ�;

ð21Þ
with

A�1=2 ¼ jbn12j
2

ðx�1=2
eff Þ2

; C ¼ ðDþ1=2
12 Þ2

ðxþ1=2
eff Þ2

þ ðD�1=2
12 Þ2

ðx�1=2
eff Þ2

;

x�1=2
eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jbn12j

2 þ ðD�1=2
12 Þ2

q
:

ð22Þ

The condition jDþ1=2
12 j ¼ jD�1=2

12 j is often fulfilled to a
good approximation even in the presence of J couplings
and is exact in the absence of J couplings. Thewell-known
equations for rotational-resonance polarization transfer

in an isolated two-spin system are then recovered:

SðtÞ
Sð0Þ ¼ C þ A � cosðxeff tÞ ð23Þ

with

C ¼ ðD12Þ2

ðxeffÞ2
; A ¼ jbn12j

2

ðxeffÞ2
; xeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jbn12j

2 þ ðD12Þ2
q

:

ð24Þ
Such a description of the time evolution of the difference

polarization does not include relaxation. In many cases,

however, the relaxation-rate constant (in the zero-
quantum subspace) is in the same order of magnitude as

the dipolar coupling of the active spin pair and can,

therefore, not be neglected. The Liouville-space de-

scription of the time evolution, introduced by Levitt

et al. [8], includes relaxation according to

^̂
L�1=2 ¼ �i

^̂
H�1=2 � ^̂C�1=2; ð25Þ

where the relaxation operator describes a random field

along the z axis, as defined by

^̂C ¼ k1½I1z; ½I1z; �� þ k2½I2z; ½I2z; ��: ð26Þ
Here, k1 and k2 are the transverse relaxation-rate con-

stants of the spins 1 and 2. Assuming the random fields

on the two spins are uncorrelated, they constitute an

effective transverse relaxation rate in the zero-quantum

subspace with R2 ¼ k1 þ k2.
In a basis spanned by the fictitious spin-1/2 operators

ðSZQx ; SZQy ; SZQz Þ, the matrix representation of the Liou-

villian can be written as

^̂
L

�1=2

12 ¼
�R2 �D�1=2

12 0

D�1=2
12 �R2 �jbn12j
0 jbn12j 0

2
4

3
5: ð27Þ

As pointed out above, the offset terms D�1=2
12 can often be

assumed to be identical and the superscript can be

omitted. Under this approximation, the density operator

in the zero-quantum subspace evolves according to

rðtÞ ¼ expð ^̂LtÞrð0Þ ð28Þ
with the initial density operator, in vector representa-

tion, given by rð0Þ ¼ ½0; 0; Sð0Þ�T. This equation is iso-

morphic with the Bloch equations with transverse but

no longitudinal relaxation. Starting with an initial den-

sity operator proportional to SZQ
z , it leads to a damped

oscillation of the difference polarization SðtÞ with an

effective frequency xeff (see Eq. (22)). The non-oscillat-
ing part (term C in Eq. (21)) will also decay to zero

under the action of R2 according to the coupled system

of equations defined by the Liouvillian.

To account for a possible pedestal of signal-compo-

nents not decaying under the zero-quantum relaxation
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mechanism (e.g., caused by natural-abundance signals
and overlap with other resonances not coupled to the

active spin system), we add a phenomenological term

rð1Þ ¼ ½0; 0; Sð1Þ�T and obtain the equation of motion

rðtÞ ¼ expð ^̂LtÞrð0Þ þ rð1Þ: ð29Þ
This equation will be used to describe the spin system.

The observable SðtÞ in the RR experiment is the third

vector component of rðtÞ. Relevant model parameters

are the active dipolar coupling bn12, the offset D�1=2
12 , the

zero-quantum relaxation rate constant R2 and the phe-

nomenological offset Sð1Þ.
It should be noted that both the effective offset and

the dipolar coupling are functions of the crystallite ori-
entation with respect to a rotor-fixed coordinate system,

i.e., D�1=2
12 ¼ D�1=2

12 ða; b; cÞ and bn12 ¼ bn12ða; b; c). There-
fore, a powder average must be performed to obtain the

time evolution.
For a numerical treatment, it is also possible to avoid

the secular approximation employed to obtain Eq. (8)

and to keep the time-dependent components of the di-

polar coupling tensors. Then a time-dependent model

Liouvillian is used

^̂
L�1=2 ¼

�R2 �n12xr � D�1=2
12 0

�n12xr þ D�1=2
12 �R2 �b12ðtÞ

0 b12ðtÞ 0

2
4

3
5
ð30Þ

and the Liouville–von-Neumann equation is solved by

the method of time slicing. In this case, the presence of

chemical-shift anisotropy for the active spins can easily

be integrated.
Fig. 2. Polarization-transfer curves of a powder sample calculated using Eq.

simulation of the spin system (black). For the blue curves the frequency-doma

at exact rotational resonance for the active spin pair. In (A) the curves sho

passive spin was added, with J13 ¼ 50Hz but no dipolar coupling equivalent

In (C) the passive spin is close to the n ¼ 1 RR condition with spin 1, with r13
the n ¼ 1 RR condition with spin 1, i.e., d13=ð2pÞ ¼ 1 kHz.
3. Analysis of the equations in the absence of relaxation

To obtain an estimate how well the approximate two-

spin model developed in the previous chapter describes a

multi-spin system, numerically exact Hilbert-space cal-

culations of an example three-spin system were per-

formed using the spin-simulation environment

GAMMA [9]. The active spin pair was chosen to have

an internuclear distance r12 ¼ 4:0�A (corresponding to
the anisotropy of the dipolar coupling dð1;3ÞD ¼ 118:5Hz)

and no J coupling. All calculations were performed on

the exact rotational-resonance condition of the active

spin pair with xr=ð2pÞ ¼ 20 kHz, and d12 ¼ 0. To sim-

plify the situation the coupling between spins 2 and 3 of

our model system was set to zero, i.e., J23 ¼ b23 ¼ 0. The

relative orientation of the two dipolar couplings (1,2)

and (1,3) was chosen to be b ¼ 90�.
The exact simulations (Fig. 2, black lines) are com-

pared to approximate solutions of Eqs. (23) and (24)

(Fig. 2, red lines) describing an effective two-spin system

and an approximate analytical description of the three-

spin system in secular approximation as described in

Appendix B (Fig. 2, blue lines) for four different situa-

tions: (i) For an isolated two-spin system, i.e., J13 ¼ 0Hz

and b13 ¼ 0Hz. The three curves are, as expected, in-
distinguishable showing that for the present case the

secular approximation of Eq. (8) is very good; (ii)

Adding a passive J coupling, J13 ¼ 50Hz, which corre-

sponds to a spin system with a heteronuclear passive

spin, leads to the behaviour shown in Fig. 2B with a

modified precession frequency and a pedestal which are

excellently described by the two-spin model of Eq. (23);

(iii) In the presence of a strong passive dipolar coupling
(21) (red), Eq. (B.1) (blue), and by performing an exact Hilbert-space

in data are shown below the time-domain data. All data were calculated

w a two-spin system with r12 ¼ 4:0�A and xr=ð2pÞ ¼ 20 kHz. In (B) a

to a situation where the passive spin pair is far from any RR condition.

¼ 1:5�A and d13=ð2pÞ ¼ 3 kHz. In (D) the passive spin is even closer to
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(dð1;3ÞD ¼ 2248Hz) and a J coupling (J13 ¼ 50Hz) to a
passive spin off rotational resonance by d13=ð2pÞ ¼ 3 kHz

the simple two-spin approximation (Eq. (23)) is still

quite good as can be seen in Fig. 2C. However, some

additional low-amplitude high-frequency oscillations

become apparent which cannot be described by the

pseudo two-spin model but by the additional frequencies

contained in Eq. (14); (iv) If the offset from the rota-

tional-resonance condition d13=ð2pÞ is reduced further,
these high-frequency oscillations become stronger. This

is shown in Fig. 2D, where the offset is smaller than

1 kHz, which is less than the passive dipolar coupling.

These components decrease in frequency but increase in

amplitude for decreasing values of d13. The simplified

model does not only fail to reproduce the high frequency

oscillations, it also gives the wrong magnitude for the

amplitude of the time-independent term. Despite the
small offset from the rotational-resonance condition for

the passive spin pair, the approximate description from

Appendix B still leads to good results. The shape of the

exchange curves also depends somewhat on the relative

orientation of the active and passive dipolar coupling

tensors (see Additional material).

Larger deviations can be observed at lower MAS

frequencies. If the calculation of Fig. 2C is repeated
with an MAS frequency of xr=ð2pÞ ¼ 5 kHz, while

adjusting the chemical-shift difference of the active spin

pair to remain on the n ¼ 1 rotational resonance, larger

deviations of the approximate solution from the exact

simulations are observed (Fig. 3). This is due to the fact

that the spin pair 1–3 is now simultaneously close to

two rotational-resonance conditions since the offset

from the n13 ¼ 1 condition is 3 kHz and the offset from
the n13 ¼ 2 condition is 2 kHz. In this case, the secular

approximation, which takes into account only the
Fig. 3. Polarization transfer curves generated in a similar way as in Fig.

2. In these simulations the MAS frequency is reduced to

xr=ð2pÞ ¼ 5 kHz. The passive spin is now close to both the n ¼ 1

(d13=ð2pÞ ¼ 3 kHz) and the n ¼ 2 (d13=ð2pÞ ¼ 2 kHz) RR conditions.
closest RR condition of the spin pair 1–3, becomes
inadequate.
4. Analysis of the equations including relaxation effects

To interpret the experimental RR polarization-

transfer curves from multiply labelled samples, three

simple models all based on the Liouvillian of Eq. (27)
were employed:

(A) In the simplest approach, the multi-spin system

was treated like a two-spin system on rotational

resonance and the offsets D�1=2
12 were set to zero. A

powder average was calculated using the Liouvillian of

Eq. (27) with the dipolar-coupling constant b12 and the

zero-quantum relaxation-rate constant R2 as well as the

initial polarization difference Sð0Þ as free parameters
(see also Eq. (28)).

(B) Based on the observation that the dipolar oscil-

lation is offset by a value C, the model A was extended

by a pedestal for the dipolar oscillation (or a base-line

offset for the transfer curves). This is the model em-

ployed in [3]. Free fit parameters are Sð0Þ, b12, R2, and

the pedestal Sð1Þ (see also Eq. (29)).

(C) The full Liouvillian of Eq. (27) with D�1=2
12 6¼ 0,

according to the model sketched in Chapter 2 was used

in this model. Since the orientation-dependent offset

from the rotational-resonance condition D�1=2
12 ða; b; c)

depends on the usually unknown relative orientation of

the two dipolar-coupling tensors, the approximation

Dþ1=2
12 ða; b; cÞ ¼ D�1=2

12 ða; b; cÞ ¼ �D was used, where �D is

constant and independent of the crystal orientation.

Free parameters of the fit (according to Eq. (29)) are the
dipolar-coupling constant b12, the zero-quantum relax-

ation-rate constant R2, the initial polarization difference

Sð0Þ, and the average effective offset from the RR con-

dition �D. Sð1Þ was held constant at the value expected

from the natural-abundance contributions.

To estimate the errors associatedwith the threemodels,

we have fitted the numerically exact polarization-transfer

curves for a three-spin model system with each of the
three two-spin models described above. The three-spin

simulations were performed in the full Liouville space

using the GAMMA spin-simulation environment [9]

complemented by block-diagonalization code to speed

up the matrix diagonalization. Relaxation was imple-

mented as described by Eqs. (25) and (26). The relax-

ation-rate constants were chosen to be identical for

every spin (k1 ¼ k2 ¼ 100s�1). The maximum mixing
time in each simulation was chosen as a function of the

distance according to smax
m ¼ 5ms � ðr12=ð1:5�AÞÞ3 or

smax
m ¼ 100ms whichever is shorter. In this way we

account for the decreasing oscillation frequency of the

transfer process for longer distances. The difference

polarization was sampled every rotor period. Gaussian

noise with a standard deviation of 0.005 was added to



Table 1

Parameters for the numerical simulations in the three-spin model

4A–C

simulations

5B simulations

(X1 (Hz), d1 (Hz), g1) (0, 0, 0) (0, 6083, 0.2466)

(a1, b1, c1) (), ), )) (36�, 134�, 127� )
(X2 (Hz), d2 (Hz), g2) (variable, 0, 0) (variable, 1542,

0.2432)

(a2, b2, c2) (), ), )) (160�, 137�, 82� )
(X3 (Hz), d3 (Hz), g3) (18750, 0, 0) (18750, 9250,

0.8919)

(a3, b3, c3) (), ), )) (42�, 109�, 87�)
d12 (Hz) (r12 (�A)) Variable Variable

(a12, b12, c12) (0�, 0�, 0�) (0�, 0�, 0�)
d13 (Hz) (r13 (�A)) 2248 (1.54) 2248 (1.54)

(a13, b13, c13) (0�, 109.5�, 0�) (0�, 109.5�, 0�)
d23 (Hz) (r23 (�A)) 0 (1Þ 0 (1Þ
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the curves after normalizing the first point to a value of

1. The v2 of the fit was normalized according to the

noise, i.e., a perfect fit would result in a v2 ¼ 1. The

parameters for the spin systems used in these simula-

tions and fits are summarized in Table 1. The fitting
program uses the optimization routines from the

package MINUIT [10].

The simulated data for the three-spin system was

fitted with models A, B, and C, respectively which all

employ an effective two-spin system. The results of this

analysis are presented in Figs. 4A–C as the relative de-

viation of the fitted distance from the actual distance

used in the simulations. As expected, strong deviations
(more than 15%) in the resulting distances are observed

near the n ¼ 1 and n ¼ 2 rotational-resonance condi-

tions for the passive spin, i.e., at X3 � X1 	 nxr using

model A (Fig. 4A). The deviations in the distance are

reduced for model B (Fig. 4B) and even more so when

using model C with Sð1Þ ¼ 0 (Fig. 4C). This is also il-

lustrated by a general decrease in the v2 of the fits, as

shown in Figs. 4D–F. For a large range of spin-system
parameters, the fit yields the ‘‘true’’ distance within 10%

accuracy. Regions where the fitted distance does not

agree with the true distance are often (in particular for

model C) but not always flagged by bad fits as expressed

by large v2 values (compare Figs. 4A–C with D–F).

Using our simulated data, we can check the system-

atic errors introduced by neglecting the angular depen-

dence of D�1=2
12 ða; b; c) and using the approximation of
Fig. 4. Relative difference between the true internuclear distance of the active

analysis using: (A) model A, (B) model B, and (C) model C as described in th

the active spins r12 and the chemical-shift difference of the active spins X1 � X
was kept constant at (X3 � X1Þ=ð2pÞ ¼ 18:75 kHz. The MAS frequency xr w

active spin pair. (D–F) show the least square deviations of the simulated da

Fig. 5. (A) Relative difference between the true internuclear distance between

square analysis using model D described in the text. (B) Analysis of a simulate

by model C as described in the text.
an Euler-angle independent offset value �D. We have,
therefore, repeated the fit with model C with a fit by a

model D which uses the dipolar-coupling constant b12,
the zero-quantum relaxation-rate constant R2, and the

initial polarization difference Sð0Þ as free parameters.

The pedestal Sð1Þ is set to zero. The orientation-de-

pendent offset from the rotational-resonance condition

D�1=2
12 ða; b; cÞ is calculated from the spin-system data

which involves knowledge of the parameters of the
passive spins. The resulting fit is shown in Fig. 5A and is

very similar to the one of Fig. 4C indicating that this

approximation of model C is justified.

Our models ignore the effects of chemical-shift an-

isotropy. Formally, this additional interaction is easy to

include into the theoretical description [7,8]. Since the

magnitude and orientation of the chemical-shift tensors

are often unknown their effects are usually ignored in
the analysis at the expense of some systematic errors.

The situation is similar in our case. The simulated

spectra that were analyzed by our models A–C in Fig. 4

were generated without anisotropic chemical-shift in-

teractions. Anisotropic chemical-shift terms were in-

cluded in the simulations used for Fig. 5B (see Table 2)

but the analysis was still performed in the framework of

our simple model C ignoring chemical-shift anisotropy
effects. Clearly, the inclusion of chemical-shift aniso-

tropies in the simulated data reduces the fidelity with

which internuclear distances can be determined. How-

ever, this happens primarily in an area where the MAS

frequency becomes so slow that it is exceeded by the

sizes of the CSA tensors. This finding is in accordance

with observations on isolated two-spin systems [8].
5. Fits of experimental RR polarization-transfer curves

In the previous two sections we have illustrated by

way of representative examples that the effect of the

passive spins on the polarization-transfer curves can be

described by an effective two-spin system. Models B and

C have been shown to yield improved accuracy com-
pared to simply neglecting the passive spins (model A).

In the following we use models B and C to analyze the

experimental RR polarization-transfer curves of four

differently labelled acetylcholine perchlorate samples

representing chemically isolated two-spin, three-spin, or
spin pair in a three spin system and the value obtained by a least square

e text. The plots are given as a function of the internuclear distance of

2. The chemical-shift difference between the active and the passive spins

as set to X1 � X2 in order to always fulfill the RR condition for the

ta and the best fit by models A–C.

the active spins in a three-spin system and the value obtained by a least-

d three-spin spectrum including chemical-shift anisotropy (see Table 1)

c
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Table 2

Results from the fits on acetylcholine perchlorate

X-ray data Model Ca Model Ba

Sample a Samples b/c Sample d Sample a Samples b/c Sample d

C1–C3 r (�A) 3.69 3.690(16) 3.889(24) 3.84(4) 3.671(14) 3.55(3) 3.43(7)

T2ZQ (ms) 8.1 9.8 6.3 7.5 4.6 2.0

D/2p (Hz) 9.5 34.8 40.8 [0] [0] [0]

Sð1Þ [0.09] [0.09] [0.09] 0.10 0.32 0.25

C1–C4 r (�A) 4.73 4.55(7) 4.60(10) 4.13(11) 3.9(3)

T2ZQ (ms) 6.3 5.6 2.5 1.2

D/2p (Hz) 31.9 42.6 [0] [0]

Sð1Þ [0.09] [0.09] 0.28 0.32

C2–C3 r (�A) 2.37 2.383(3) 2.388(4) 2.378(3) 2.371(3)

T2ZQ (ms) 15.0 10.9 17.5 16.7

D/2p (Hz) 22.0 42.7 [0] [0]

Sð1Þ [0.09] [0.09] 0.12 0.18

C2–C4 r (�A) 3.63 3.643(15) 3.740(20) 3.476(16) 3.42(3)

T2ZQ (ms) 10.6 10.6 7.9 5.3

D/2p (Hz) 30.1 39.0 [0] [0]

Sð1Þ [0.09] [0.09] 0.26 0.35

aValues in [ ] were kept constant and fixed in the fits.

Fig. 6. The labelling schemes of the acetylcholine perchlorate samples

used in the acquisition of the experimental RR curves.
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five-spin systems, respectively. The compounds used in

this study were synthesized as described in Appendix C

and diluted to 10% in natural-abundance material. The

labelling schemes are shown in Fig. 6. The chemical

shifts of the five carbon atoms were determined as 19.4,

171.7, 58.8, 64.2, and 53.6 ppm for C1–C5. All experi-
ments were performed at the nominal n ¼ 1 RR condi-

tion for the active spin pair on a Bruker Avance 600

spectrometer equipped with a Bruker 2.5mm MAS

probe. The spinning frequency was stabilized to about

�5Hz. Rotational-resonance experiments were per-

formed following adiabatic cross polarization from

protons [11]. After cross polarization, the polarization

of one of the 13C resonances was selectively inverted
using a DANTE pulse train [12] empirically optimized

for each of the transfer curves. After a variable mixing

time, the polarization was converted to single-quantum

coherence by a 90� pulse and detected. During the

mixing time and data acquisition, TPPM [13] decoupling

was applied using an RF-field strength of about

120 kHz, a 10� phase angle, and a pulse length of 5 ls.
Each point of the polarization-transfer curve was the
result of the summation of 128 transients. The data were

processed and integrated into Felix 97.0 (Accelrys, CA).
The experimental transfer curves are shown in dark

blue in Fig. 7, the fitted curves using model C in red. The

resulting fit parameters are given in Table 2. Overall,

good agreement between the different measurements as

well as with the X-ray structure is observed.

It is illustrating to compare the three transfer curves

between C1 and C3 measured in almost isolated two-

spin, three-spin, and five-spin systems. Experimentally
we observe that the presence of the additional passive

spins causes a damping of the oscillations and slightly

increases the oscillation frequency. Despite the obvious

differences between the three transfer curves, the inter-

nuclear distances obtained with model C, namely 3.69,

3.88, and 3.84�A, do not deviate from each other by

more than about 5%. As expected, the result from the

RR experiment on an isolated two-spin system is very
close to the X-ray distance of 3.69�A [14]. Model B yields

distances of 3.67, 3.55, and 3.43�A, respectively and

underestimates the distances measured in multi-spin
systems somewhat because the faster oscillation fre-

quency is interpreted in terms of a stronger dipolar

coupling only (see Eq. (24) with D12 ¼ 0). Using model B,

the maximum error in the distance amounts to about 8%.

For the longest distance measured in acetylcholine

perchlorate, namely C1–C4 with a distance of 4.73�A, an

error of less than 4% was encountered by analyzing the

multi-spin RR experiments with model C, which clearly
performs much better than model B which shows an

error of about 20%. Additional simulations (not shown)

indicate that the systematic deviations between mea-

sured and modelled curves in Fig. 7 which occur at

longer mixing times even for the isolated two-spin sys-

tem, should be attributed to the effect of the chemical-

shielding anisotropy which is not accounted for in the



Fig. 7. Experimental RR polarization-transfer curves for acetylcholine perchlorate with labelling schemes as indicated by model C. The parameter

values obtained by the fits are collected in Table 2.
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model. Finally, we note that, on careful inspections of

the initial behaviour of some experimental polarization-

transfer curves (e.g., for the C2–C4 curve), the appear-

ance of fast oscillations, as discussed in the context of

the simulated data in Fig. 2D can be observed.
6. Conclusions

An improved but still very simple model is introduced

which allows the evaluation of internuclear distances

from multiply labelled compounds by rotational-reso-

nance experiments obviating the need to synthesize a
large number of doubly labelled compounds. The model

describes the oscillation of the difference polarization

between the two active spins by an effective two-spin

system with a dipolar-coupling constant bn12 (the pa-

rameter one is usually interested in), an effective offset �D
from the nominal RR condition, and a zero-quantum

relaxation-rate constant R2. The parameters of the ad-

ditional passive spins need not be known except that the
isotropic chemical shifts should be checked to make sure

that the offset of each passive spin from the nearest ro-

tational-resonance condition is larger than the dipolar

coupling to that spin. If such an undesired resonance

appears, it will, however, become often apparent

through the failure of the proposed models to describe

the polarization-transfer curves accurately.
Our experimental data on acetylcholine perchlorate

show, in agreement with numerical simulations, that it is

possible to determine internuclear distances of up to

about 5�A with an accuracy better than 5% using rota-

tional-resonance measurements in many uniformly la-
beled samples. The experimental data on acetylcholine,

a neurotransmitter, suggest that measurements on a

single sample with acetylcholine bound to the receptor,

can provide information about the structure of a small

molecule in the bound state. Similar experiments with

other drugs or hormones are conceivable. We also

foresee that the method is applicable to macromolecules

because spectral crowding does, by itself, not compro-
mise the power of the analysis presented here as only

passive spins with a sizeable coupling need to be taken

into account in the analysis.

While more complex models which take into account

explicitly the presence of passive spins have the potential

to lead to more accurate distance constraints, the model

presented here has the advantage to be very simple and

not to require any previous knowledge of the spin sys-
tem except for the isotropic chemical shifts of the cou-

pled spins. This information is easily obtainable by a

broadband chemical-shift correlation experiment. The

accuracy of the distance constraints is not quite as pre-

cise as those obtained from selectively doubly labelled

compounds, but, in our hands, much higher than con-

straints from broadband experiments of the driven
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spin-diffusion type. Finally, it should be mentioned that
the accuracy of the methods described here improves

with increasing magnetic field strength. Our example

describes the situation at 14.1 T.
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Appendix A. Fourier components

The Fourier components for the dipolar interaction
are given by

b1ij ¼
ffiffi
2

p

16
dði;jÞD e�icmre�2iðamrþcði;jÞpm Þ � ðsinðbði;jÞ

pm Þ sinðbmrÞ

� 2eiðamrþcði;jÞpm Þ cosðbði;jÞ
pm Þ cosðbmrÞ

þ e2iðamrþcði;jÞpm Þ sinðbði;jÞ
pm Þ sinðbmrÞÞ � ðsinðbði;jÞ

pm Þ

þ cosðbmrÞ sinðbði;jÞ
pm Þ þ 2eiðamrþcði;jÞpm Þ cosðbði;jÞ

pm Þ

� sinðbmrÞ þ e2iðamrþcði;jÞpm Þð� sinðbði;jÞ
pm Þ

þ cosðbmrÞ sinðbði;jÞ
pm ÞÞÞ ðA:1Þ

and

b2ij ¼ 1
32
dði;jÞD e�2icmre�2iðamrþcði;jÞpm Þðsinðbði;jÞ

pm Þ cosðbmrÞ

� sinðbði;jÞ
pm Þ þ 2eiðamrþcði;jÞpm Þ cosðbði;jÞ

pm Þ sinðbmrÞ

þ e2iðamrþcði;jÞpm Þð� sinðbði;jÞ
pm Þ þ cosðbmrÞ

� sinðbði;jÞ
pm ÞÞÞ2 ðA:2Þ

with dði;jÞD ¼ �2l0cicj�h=ð4pr3ijÞ and bnij ¼ ðb�n
ij Þ

�
. The Euler

angles bði;jÞ
pm ; cði;jÞpm describe the orientation of the principal-

axis system of the dipolar-coupling tensors with respect
to the molecular frame which is most conveniently

chosen to be the principal axis system of the dipolar

tensor of the active spin pair such that bð1;2Þ
pm ¼ cð1;2Þpm ¼ 0.

The other set of Euler angles, (amr; bmr; cmr), gives the

orientation of the molecular frame with respect to the

rotor-fixed frame. The latter set of Euler angles will be

used to perform the powder average.
Appendix B. Theoretical description of rotational reso-

nance with higher accuracy

Here we shortly discuss an approximate analytical

solutions for the diagonalization of the two 3� 3 sub-

spaces of Eqs. (12) and (13) based on the Jacobi method
of matrix diagonalization [15]. These formulas have

been used to calculate the blue curves in Fig. 2. One of

the passive dipolar couplings was assumed to be zero
(bn23 ¼ 0). We first diagonalize the 2� 2 subspace of spin
pair (1,3) and subsequently the 2� 2 subspace of the

active spin pair (1,2). The off-diagonal terms still re-

maining after these two Jacobi steps were neglected.

This procedure leads us to the following approxima-

tion for Eq. (14):

SðtÞ
Sð0Þ ¼ C�1=2 þ Cþ1=2 þ A�1=2

12 cosðx�1=2
eff ;12tÞ þ Aþ1=2

12

� cosðxþ1=2
eff ;12tÞ þ A�1=2

13 cosðx�1=2
eff;13tÞ

þ Aþ1=2
13 cosðxþ1=2

eff ;13tÞ þ A�1=2
23 cosðx�1=2

eff ;23tÞ

þ Aþ1=2
23 cosðxþ1=2

eff ;23tÞ ðB:1Þ

with the offset is given by

c�1=2 ¼ 1
64
ðP1þ2 � 2P3Þð1� c�1=2

13 Þð5þ 7c�1=2
13 þ ð3þ c�1=2

13 Þ

� ððc�1=2
12 Þ2 � ðs�1=2

12 Þ2ÞÞ þ P1�2

128
ð37� 12c�1=2

13

þ 2ð3þ c�1=2
13 Þððc�1=2

12 Þ2 � ðs�1=2
12 Þ2Þ

þ 7ððc�1=2
12 Þ2 � ðs�1=2

12 Þ2ÞÞ ðB:2Þ

and the amplitudes by

A�1=2
12 ¼ P1�2

32
ð3þ c�1=2

13 Þðs�1=2
12 Þ2 þ ðP1þ2 � 2P3Þ

32

� ð1� c�1=2
13 Þð3þ c�1=2

13 Þðs�1=2
12 Þ2; ðB:3Þ

A�1=2
13 ¼ ðP1�2 � P1þ2 þ 2P3Þ

16
ð1þ c�1=2

12 Þðs�1=2
13 Þ2; ðB:4Þ

A�1=2
23 ¼ ðP1�2 � P1þ2 þ 2P3Þ

16
ð1� c�1=2

12 ÞðS�1=2
13 Þ2: ðB:5Þ

Here, P1þ2; P1�2, and P3 represent the initial sum and

difference polarization of the active spin pair and the
initial polarization on spin 3, respectively, while

ckij ¼ cosðhkijÞ and skij ¼ sinðhkijÞ represent the cosines and

sines of the tilt of the effective field with respect to the z-

axis in the fictitious spin-1/2 zero-quantum subspaces of

spins i and j. They are defined by

c�1=2
13 ¼ D�1=2

13 =X�1=2
eff ;13 and S�1=2

13 ¼ jb13j=X�1=2
eff ;13 ðB:6Þ

for the (1,3) subspace, and by

c�1=2
12 ¼ D�1=2

12 =x�1=2
eff ;12 and

S�1=2
12 ¼ jb12j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð1þ c�1=2

13 Þ
q� �

=x�1=2
eff;12

ðB:7Þ

for the (1,2) subspace. The effective offsets from the RR

condition in the two subspaces are given by

D�1=2
13 ¼ J23

2
� d13 and

D�1=2
12 ¼

 
� J13

2
þ J23

4
� d12 �

d13
2

þ
X�1=2

eff;13

2

! ðB:8Þ
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and the effective dipolar couplings are defined by

X�1=2
eff;13 ¼ sgnðD�1=2

13 Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jb13j2 þ ðD�1=2

13 Þ2
q

; ðB:9Þ

x�1=2
eff;12 ¼ sgnðD�1=2

12 Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD�1=2

12 Þ2 þ 1
2
jb12j2ð1þ c�1=2

13 Þ
q

;

ðB:10Þ

x�1=2
eff;13 ¼

D�1=2
12

2

 
� X�1=2

eff ;13 þ
x�1=2

eff;12

2

!
; ðB:11Þ

 !

x�1=2

eff;23 ¼
D�1=2

12

2
� X�1=2

eff ;13 �
x�1=2

eff;12

2
: ðB:12Þ

Fig. C.1. Reaction scheme for the synthesis of f
Appendix C. Synthesis of 13C labelled acetylcholine
compounds

A strategy for the synthesis of acetylcholine perchlo-

rate was developed which permitted the introduction of
13C labels in any combination of positions from a range

of commercially available 13C-labelled precursors. An

overview is presented in Fig. C.1. The key intermediate in

the synthesis of 13C labelled acetylcholine compounds
was the synthesis of 13C-labelled 2-aminoethanol and is

illustrated in detail below for [1,2-13C2]2-aminoethanol.

Triethylamine (40ml) was added to a cooled stirred

suspension (0 �C) of 13C-labelled glycine ethylester hy-

drochloride (18.3 g), CH2Cl2 (260ml), MgSO4 (13.1 g),

and benzaldehyde (14.1 g). The mixture slowly reached

room temperature and stirring was continued for 24 h.
ully or specufically labelled acetylcholine.
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The solid was filtered, the filtrate evaporated at low
temperature versus a liquid nitrogen trap. The oily res-

idue was cooled to 0 �C, diluted with water (60ml) and

extracted extensively with ether. The combined etheral

extracts were dried with magnesium sulfate and again

evaporated at low temperature, resulting in N-benzy-

lidene-[13C2]glycine ethylester (25 g).

The N-benzylidene-[13C2]glycine ethylester was dis-

solved in dry ether (200ml) and slowly added to LiAlH4

(10 g) in ether (400ml). After stirring at room tempera-

ture for 1 h the mixture was refluxed for 24 h. After

hydrolysis with H2O and 10% NaOH in H2O, the sus-

pension was filtrated. The filtrate was evaporated to

yield N-benzylamino-[1,2-13C2]glycinol as a colorless oil

(21 g).

The N-benzylamino-[1,2-13C2]glycinol was dissolved

in CH3OH (300ml), Pd/C 20% (Degussa, 6 g) was added
and under shaking the mixture was catalytically hydro-

genated at room temperature during 20 h. The catalyst

was filtered off and the filtrate was evaporated, which

resulted in [1,2-13C2]2-aminoethanol (8.7 g).

The 2-aminoethanol was subsequently alkylated with

excess methyliodide with sodium methoxide as base. The

obtained choline iodide was acetylated by 13C-labelled

acetic anhydride in pyridine with DMAP as catalyst.
The iodide counter ion was replaced by a perchlorate

ion by adding the acetylcholine iodide to a saturated

ammonium-perchlorate solution in water at room tem-

perature. The compound was dissolved by heating the

mixture to the boiling point. After slow cooling to room
temperature, acetylcholine perchlorate crystals are ob-
tained as needles.
References

[1] K. Wuthrich, J. Biomol. NMR 27 (2003) 13–39.

[2] For a recent review see: S. Dusold, A. Sebald, Annu. Rep. NMR

Spectrosc. 41 (2000) 185–264.

[3] P.T.F. Williamson, A. Verhoeven, M. Ernst, B.H. Meier, J. Am.

Chem. Soc. 125 (2003) 2718–2722.

[4] C.P. Jaroniec, B.A. Tounge, J. Herzfeld, R.G. Griffin, J. Am.

Chem. Soc. 123 (2001) 3507–3519.

[5] B. Reif, R.G. Griffin, J. Magn. Reson. 160 (2003) 78–83.

[6] D.P. Raleigh, M.H. Levitt, R.G. Griffin, Chem. Phys. Lett. 146

(1988) 71–76.

[7] M.G. Colombo, B.H. Meier, R.R. Ernst, Chem. Phys. Lett. 146

(1988) 189–196.

[8] M.H. Levitt, D.P. Raleigh, F. Creuzet, R.G. Griffin, J. Chem.

Phys. 92 (1990) 6347–6364.

[9] S. Smith, T. Levante, B.H. Meier, R.R. Ernst, J. Magn. Reson.

Ser. A 106 (1994) 75–105.

[10] The program MINUIT was used. This is part of the PACKLIB

program package and Switzerland was obtained under the

conditions of the CERN Program Library/Divison CN, CERN

1211 Geneva, Switzerland.

[11] S. Hediger, B.H. Meier, R.R. Ernst, Chem. Phys. Lett. 240 (1995)

449–456.

[12] P. Caravatti, G. Bodenhausen, R.R. Ernst, J. Magn. Reson. 55

(1983) 88–103.

[13] A.E. Bennett, C.M. Rienstra, M. Auger, K.V. Lakshmi, R.G.

Griffin, J. Chem. Phys. 103 (1995) 6951–6958.

[14] V. Mahajan, R.L. Sass, J. Cryst. Mol. Struct. 4 (1974) 15–21.

[15] J.C. Nash, Compact Numerical Methods for Computers, Adam

Hilger, Bristol, New York, 1979.


	Rotational-resonance distance measurements in multi-spin systems
	Introduction
	Theoretical description
	Analysis of the equations in the absence of relaxation
	Analysis of the equations including relaxation effects
	Fits of experimental RR polarization-transfer curves
	Conclusions
	Acknowledgements
	Fourier components
	Theoretical description of rotational resonance with higher accuracy
	Synthesis of 13C labelled acetylcholine compounds
	References


